

ТЕХНИЧЕСКИЙ ПАСПОРТ ИЗДЕЛИЯ: ЭЛЕКТРОПРИВОД МНОГООБОРОТНЫЙ СЕРИИ S

Предприятие — изготовитель: Chengde Rui Mai Trading Co., Ltd. Aдрес: ROOM 311, UNIT 5, 1-1# BUILDING, ZHONGXING ROAD, SHUANGQIAO DISTRICT CHENGDE CITY, HEBEI CHINA, Китай

Выдан Испытательной лабораторией «Инициатива»(рег. номер РОСС RU/31587.ИЛ.00009)

Срок действия с 23.09.2021 по 22.09.2026

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- **1.1.** Электроприводы многооборотные серии S предназначены для дистанционного и местного управления вращением запорного органа задвижек с обрезиненным клином, шиберных ножевых задвижек и другой запорной арматуры.
- 1.2. Электроприводы устанавливаются непосредственно на трубопроводной арматуре.
- **1.3.** Электропривод может применяться в различных отраслях народного хозяйства: в газовой, нефтяной, металлургической, пищевой промышленности, в жилищно-коммунальном хозяйстве и т л

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Технические характеристики электроприводов.

24
IP67
F
от-30 до+70

Относительная влажность воздуха, % не более

95

3. ГАБАРИТНЫЕ ХАРАКТЕРИСТИКИ

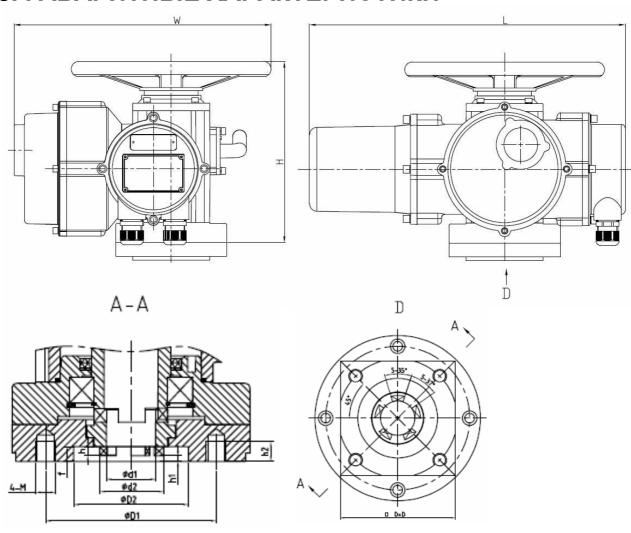


Рис. 1. Габаритные и присоединительные размеры электроприводов серии S.

	h1, мм	3	3	3	7	7	11	11	11	11	3	3	7
	h2, мм	18	18	18	22	22	28	28	40	40	18	18	22
	4-M	4-M12	4-M12	4-M12	4-M12	4-M12	4-M20	4-M20	4-M20	4-M20	4-M12	4-M12	4-M12
*	*Для расчета максимального крутящего момента на электроприводе необходимо добавить 30% от значения номинального												

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

S-70

0,25

0,6

Α

100×

0,25

0,6

100×

Α

S-100 S-150 S-200

0,55

1,3

Б

122×

0,37

8.0

Α

100×

крутящего момента. При работе на максимальных значениях, срок службы электропривода резко снижается

S-300 S-450 S-600 S-900

1,50

3,2

В

200×

2,20

4,5

200×

В

1,10

2,5

В

200×

0,75

1,7

Б

122×

S-1200 S-70

0,25

1,14

Α

100×

3,00

6,3

В

200×

S-100

0,25

1,14

100×

Α

S-200

0,37

1,68

122×

Б

- 4.1. Электропривод состоит из шести основных частей:
 - электродвигателя;

Характеристика

Напряжение. В

Мощность, кВт

Н×м*

Ток, А

L, мм

Н, мм

D×D, мм

D2, мм

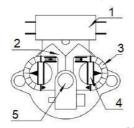
D1, мм

d2, мм

d1, мм

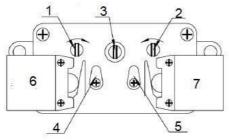
f, MM

h, мм


55510-2013

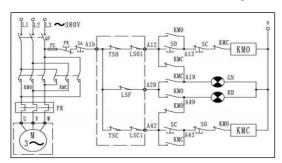
-Номинальный крутящий момент, ₇₀

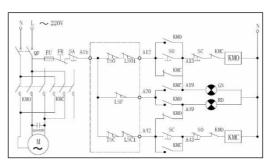
Тип присоединения по ГОСТ Р


- редуктора, передающего усилие от электродвигателя на выходной вал;
- механизма управления крутящим моментом, ходом и регулировкой;

Механизм управления крутящим моментом

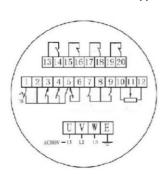
Поз	Наименование		
1	Микропереключатель		
2	Опорная пластина		
3	Заводная ручка		
4	Разделительный диск		
5	Регулировочный вал		


Механизм управления ходом



Поз	Наименование
1	Регулировочный вал закрытия
2	Регулировочный вал
3	Выталкивающий штифт
4	Кулачок закрытия
5	Кулачок открытия
6	Концевой выключатель закрытия
7	Концевой выключатель открытия

- механизма переключения на ручное управление (для перехода от электрического к ручному управлению необходимо потянуть рычаг переключения);
- маховика, служащего для открытия, закрытия арматуры при переходе на ручное управление;
- электрической части.


Электрическая схема

Код	Наименование	Кол-во	Примечание
FR	Термореле	1	Устанавливается пользователем
KMO KMC	Контактор переменного тока	1	Устанавливается пользователем
SA S0 SC	Кнопка	3	Устанавливается пользователем
TSO TSC	Выключатель вращения	1	
ISOISA	KORLUADON BLIKRIOUSTARL	1	

Подключение электропривода и индикация

Подключение							
1	Удержание						
4	Закрыть/Выключить						
10 11 12	Потенциометр						
13 14 15	Регулировка пределов открытия						
	Индикация						
5-6	Предупреждающая индикация (Перезагрузка)						
7-8	Индикация открытия						
8-9	Индикация закрытия						

5. НАСТРОЙКА ЭЛЕКТРОПРИВОДА

Настройка электропривода обязательна и перед установкой на арматуру необходимо выполнить проверку его работоспособности.

- **5.1.** Настройка механизма управления крутящим моментом выполнить при отсутствии давления в системе и проверив отключение потенциометра на индикаторе положения (ослабить установочный винт шестерни на валу потенциометра, чтобы он вышел из зацепления):
 - отрегулировать момент закрытия (начиная с небольшого значения крутящего момента, постепенно увеличивать значение крутящего момента до тех пор, пока клапан не будет плотно закрыт;
 - после подачи давления в систему проверить герметичность закрытия арматуры (при отсутствии герметичности следует увеличить значение крутящего момента до значения, обеспечивающего полное открытие и герметичность при закрытии затвора арматуры).
- 5.2. Регулировка механизма управления ходом.
- 5.2.1 Регулировка хода закрытия:
 - закрыть арматуру вручную;
 - отсоединить механизм управления ходом (с помощью отвертки надавить на штифт выталкивателя в механизме управления ходом и повернуть его на 90°, чтобы отделить ведущую шестерню от шестерни противодействия;
 - предварительно отрегулировать ход закрытия (с помощью отвертки повернуть регулировочный вал закрытия (1) в направлении стрелки до тех пор, пока кулачок закрытия (4) не нажмет на прижимную пластину пружины, чтобы сработал концевой выключатель закрытия (6);
 - ослабить штифт выталкивателя, чтобы ведущая шестерня и шестерни с обеих сторон правильно вошли в зацепление (отверткой немного повернуть регулировочный вал влево-вправо);
 - открыть затвор на несколько оборотов, а затем закрыть и в зависимости от того, соответствует ли ход закрытия требованиям скорректировать ход закрытия.
- 5.2.2. Регулировка хода закрытия:
 - открыть арматуру вручную (обратить внимание, что в это время механизм управления ходом должен быть включен, иначе регулировка хода закрытия нарушится);
 - отсоединить механизм управления ходом (с помощью отвертки надавить на штифт выталкивателя в механизме управления ходом и повернуть его на 90°, чтобы отделить ведущую шестерню от шестерни противодействия:
 - предварительно отрегулировать ход открытия (с помощью отвертки повернуть регулировочный вал открытия (2) в направлении стрелки до тех пор, пока кулачок открытия (5) не нажмет на прижимную пластину пружины, чтобы сработал концевой выключатель открытия (7);
 - ослабить штифт выталкивателя, чтобы ведущая шестерня и шестерни с обеих сторон правильно вошли в зацепление (отверткой немного повернуть регулировочный вал влево-вправо);
 - закрыть затвор на несколько оборотов, а затем открыть и в зависимости от того, соответствует ли ход открытия требованиям скорректировать ход открытия.

6. МЕРЫ БЕЗОПАСНОСТИ

- **6.1.** Обслуживающий персонал допускается к обслуживанию электропривода только после прохождения соответствующего инструктажа по технике безопасности
- 6.2. При обслуживании электропривода должны соблюдаться следующие правила:
 - обслуживание электропривода должно вестись в соответствии с установленными «Правилами технической эксплуатации электроустановок потребителей»;
 - место установки электропривода должно иметь достаточную освещенность;
 - корпус электропривода должен быть заземлен;
 - монтажные работы с электроприводами должны проводиться только исправным инструментом;
 - приступая к профилактической работе, необходимо убедиться, что электропривод отключен от электросети.

7. МОНТАЖ

- **7.1.** К монтажу электропривода допускается персонал, изучивший устройство электропривода, правила техники безопасности, требования настоящего руководства.
 - 7.2. Рабочее положение электропривода любое.
 - 7.3. Перед монтажом электропривода проверить:
 - внешний вид электропривода (на отсутствие внешних повреждений);
 - наличие и состояние техдокументации;
 - легкость перемещения подвижных деталей при работе от ручного дублера;
 - снять защитную крышку и осмотреть внутренние детали электропривода (колодки, микровыключатели).
- 7.4. Монтаж электропривода производится непосредственно на запорную арматуру. При монтаже обратить внимание на правильное совмещение посадочного фланца электропривода и ответного посадочного фланца на исполнительном органе. Не допускается посадка «в натяг», люфты, зазоры при сопряжении электропривода и запорного органа. Это приводит к увеличению нагрузки на узлы и детали электропривода, ускоренному износу и быстрому выходу из строя электропривода.
- **7.5.** Обратить внимание на соответствие выходного вала запорной арматуры и посадочного отверстия в выходном валу электропривода. Люфты не допускаются это приводит к быстрому износу деталей электропривода и запорной арматуры.
 - 7.6. После монтажа проверить:
 - работу электропривода в ручном режиме: вращая маховик, убедиться в плавности хода затвора арматуры;
 - работу электропривода от электродвигателя: проверку настройки на открытие, закрытие и четкость срабатывания ограничителя хода выходного вала (выполнить 2-3 цикла открыть- закрыть).

8. УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

- **8.1.** Электропривод должен храниться в упаковке предприятия-изготовителя согласно условиям 3 по ГОСТ 15150. Воздух в помещении, в котором хранится ТМЦ, не должен содержать коррозионно-активных веществ.
- 8.2. Транспортирование клапана должно соответствовать условиям 5 по ГОСТ 15150.

9. УТИЛИЗАЦИЯ

9.1. Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ от 04 мая 1999 г. № 96ФЗ «Об охране атмосферного воздуха» (в редакции от 01.01.2015), от 24 июня 1998 г. № 89-ФЗ (в редакции от 01.02.2015г) «Об отходах производства и потребления», от 10 января 2002 №7-ФЗ «Об охране окружающей среды» (в редакции от 01.01.2015), а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во использование указанных законов.

10. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- **10.1.** Изготовитель гарантирует соответствие товара настоящему паспорту при соблюдении Потребителем условий эксплуатации, транспортировки и хранения. Гарантийные обязательства распространяются на все дефекты, возникшие по вине завода-изготовителя. Гарантийный срок 12 месяцев с даты продажи.
- 10.2. Гарантия не распространяется на дефекты, возникшие в случаях:
 - нарушения паспортных режимов хранения, монтажа, испытания, эксплуатации и обслуживания изделия;
 - наличия следов воздействия веществ, агрессивных к материалам изделия;
 - наличия повреждений, вызванных пожаром, стихией, форс-мажорными обстоятельствами; повреждений, вызванных неправильными действиями потребителя;
 - наличия механических повреждений или следов вмешательства в конструкцию изделия

ГАРАНТИЙНЫЙ ТАЛОН

КОЛИЧЕСТВО ШТ

ДАТА ПРОДАЖИ

подпись

ШТАМП ТОРГУЮЩЕЙ (ПОСТАВЛЯЮ ЩЕЙ) ОРГАНИЗАЦИИ

Гарантийный срок – 12 месяцев с даты продажи

Срок службы-12 месяцев